首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Review of the System-Intrinsic Nonequilibrium Thermodynamics in Extended Space (MNEQT) with Applications
Authors:Purushottam D Gujrati
Institution:1.Department of Physics, The University of Akron, Akron, OH 44325, USA;2.Department of Polymer Science, The University of Akron, Akron, OH 44325, USA
Abstract:The review deals with a novel approach (MNEQT) to nonequilibrium thermodynamics (NEQT) that is based on the concept of internal equilibrium (IEQ) in an enlarged state space SZ involving internal variables as additional state variables. The IEQ macrostates are unique in SZ and have no memory just as EQ macrostates are in the EQ state space SXSZ. The approach provides a clear strategy to identify the internal variables for any model through several examples. The MNEQT deals directly with system-intrinsic quantities, which are very useful as they fully describe irreversibility. Because of this, MNEQT solves a long-standing problem in NEQT of identifying a unique global temperature T of a system, thus fulfilling Planck’s dream of a global temperature for any system, even if it is not uniform such as when it is driven between two heat baths; T has the conventional interpretation of satisfying the Clausius statement that the exchange macroheatdeQflows from hot to cold, and other sensible criteria expected of a temperature. The concept of the generalized macroheat dQ=deQ+diQ converts the Clausius inequality dSdeQ/T0 for a system in a medium at temperature T0 into the Clausius equalitydSdQ/T, which also covers macrostates with memory, and follows from the extensivity property. The equality also holds for a NEQ isolated system. The novel approach is extremely useful as it also works when no internal state variables are used to study nonunique macrostates in the EQ state space SX at the expense of explicit time dependence in the entropy that gives rise to memory effects. To show the usefulness of the novel approach, we give several examples such as irreversible Carnot cycle, friction and Brownian motion, the free expansion, etc.
Keywords:unique-nonunique macrostate  system-intrinsic and medium-intrinsic properties  internal equilibrium  extended state space  entropy with and without memory  entropy generation  global temperature  generalized macroheat and macrowork  steady state  microstate probabilities  Brownian motion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号