首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Finite element interpolation for combined classical/quantum mechanical molecular dynamics simulations
Authors:Christian D Berweger  Wilfred F van Gunsteren  Florian Müller&#x;Plathe
Abstract:A method is presented to interpolate the potential energy function for a part of a system consisting of a few degrees of freedom, such as a molecule in solution. The method is based on a modified finite element (FE) interpolation scheme. The aim is to save computer time when expensive methods such as quantum-chemical calculations are used to determine the potential energy function. The expensive calculations are only carried out if the molecule explores new unknown regions of the conformation space. If the molecule resides in regions previously explored, a cheap interpolation is performed instead of an expensive calculation, using known neighboring points. We report the interpolation techniques for the energies and the forces of the molecule, the handling of the FE mesh, and an application to a simple test example in molecular dynamics (MD) simulations. Good performance of the method was obtained (especially for MD simulations with a preceding Monte Carlo mesh generation) without losing accuracy. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1484–1495, 1997
Keywords:energy hypersurface interpolation  force interpolation  simplex  molecular dynamics algorithm  Monte Carlo algorithm
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号