首页 | 本学科首页   官方微博 | 高级检索  
     


Heat capacity of poly(vinylidene fluoride) and polytetrafluoroethylene between 5 and 200°K
Authors:C. L. Choy  W. Y. Leung  F. C. Chen
Abstract:Heat capacities of poly(vinylidene fluoride) (PVF2) and polytetrafluoroethylene (PTFE) have been measured between 5 and 100°K with an accuracy of (1–5)% by adiabatic calorimetry. Calculations based on contributions from known optical lines and the Tarasov continuum model are in good agreement with experimental results down to 30°K for PVF2 and 10°K for PTFE, and yield characteristic temperatures θ1 and θ3 which are consistent with previous values determined from high-temperature (100—350°K) data. At lower temperature the measured heat capacity is significantly higher [(30–100)%] than the model prediction, and can be satisfactorily accounted for by the introduction of localized vibrators at a concentration of about 1% as compared to acoustical oscillators and at a characteristic temperature of about 20°K. Using established data on polyethylene for comparison, the principle of additivity for heat capacities is found to be valid down to at least 20°K, convering the region (<60°K) where interchain vibrations contribute significantly to the heat capacity. Possible reasons for this unexpected behavior are discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号