首页 | 本学科首页   官方微博 | 高级检索  
     检索      


pK(a) coupling at the intein active site: implications for the coordination mechanism of protein splicing with a conserved aspartate
Authors:Du Zhenming  Zheng Yuchuan  Patterson Melissa  Liu Yangzhong  Wang Chunyu
Institution:Biology Department, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
Abstract:Protein splicing is a robust multistep posttranslational process catalyzed by inteins. In the Mtu RecA intein, a conserved block-F aspartate (D422) coordinates different steps in protein splicing, but the precise mechanism is unclear. Solution NMR shows that D422 has a strikingly high pK(a) of 6.1, two units above the normal pK(a) of aspartate. The elevated pK(a) of D422 is coupled to the depressed pK(a) of another active-site residue, the block-A cysteine (C1). A C1A mutation lowers the D422 pK(a) to normal, while a D422G mutation increases the C1 pK(a) from 7.5 to 8.5. The pK(a) coupling and NMR structure determination demonstrate that protonated D422 serves as a hydrogen bond donor to stabilize the C1 thiolate and promote the N-S acyl shift, the first step of protein splicing. Additionally, in vivo splicing assays with mutations of D422 to Glu, Cys, and Ser show that the deprotonated aspartate is essential for splicing, most likely by deprotonating and activating the downstream nucleophile in transesterification, the second step of protein splicing. We propose that the sequential protonation and deprotonation of the D422 side chain is the coordination mechanism for the first two steps of protein splicing.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号