首页 | 本学科首页   官方微博 | 高级检索  
     


Dissociation dynamics of positive-ion and negative-ion fragments of gaseous and condensed Si(CH(3))(2)Cl(2) via Si 2p, Cl 2p, and Cl 1s core-level excitations
Authors:Chen J M  Lu K T  Lee J M  Chen C K  Haw S C
Affiliation:National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, Republic of China. jmchen@nsrrc.org.tw
Abstract:The state-selective positive-ion and negative-ion dissociation pathways of gaseous and condensed Si(CH(3))(2)Cl(2) following Cl 2p, Cl 1s, and Si 2p core-level excitations have been characterized. The excitations to a specific antibonding state (15a(1) (*) state) of gaseous Si(CH(3))(2)Cl(2) at the Cl 2p, Cl 1s, and Si 2p edges produce significant enhancement of fragment ions. This ion enhancement at specific core-excited states correlates closely with the ion kinetic energy distribution. The results deduced from ion kinetic energy distribution are consistent with results of quantum-chemical calculations on Si(CH(3))(2)Cl(2) using the ADF package. The Cl(-) desorption yields for Si(CH(3))(2)Cl(2)Si(100) at approximately 90 K are notably enhanced at the 15a(1) (*) resonance at both Cl 2p and Si 2p edges. The resonant enhancement of Cl(-) yield occurs through the formation of highly excited states of the adsorbed molecules. These results provide insight into the state-selective ionic fragmentation of molecules via core-level excitation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号