首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Isotope selective photoionization of NaK by optimal control: theory and experiment
Authors:Schäfer-Bung Boris  Bonacić-Koutecký Vlasta  Sauer Franziska  Weber Stefan M  Wöste Ludger  Lindinger Albrecht
Institution:Institut für Chemie, Humboldt-Universit?t zu Berlin, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany.
Abstract:We present a joint theoretical and experimental study of the maximization of the isotopomer ratio (23)Na(39)K(23)Na(41)K using tailored phase-only as well as amplitude and phase modulated femtosecond laser fields obtained in the framework of optimal control theory and closed loop learning (CLL) technique. A good agreement between theoretically and experimentally optimized pulse shapes is achieved which allows to assign the optimized processes directly to the pulse shapes obtained by the experimental isotopomer selective CLL approach. By analyzing the dynamics induced by the optimized pulses we show that the mechanism involving the dephasing of the wave packets between the isotopomers (23)Na (39)K and (23)Na (41)K on the first excited state is responsible for high isotope selective ionization. Amplitude and phase modulated pulses, moreover, allow to establish the connection between the spectral components of the pulse and corresponding occupied vibronic states. It will be also shown that the leading features of the theoretically shaped pulses are independent from the initial conditions. Since the underlying processes can be assigned to the individual features of the shaped pulses, we show that optimal control can be used as a tool for analysis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号