首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Testing Post-IR IRSL protocols for minimising fading in feldspars,using Alaskan loess with independent chronological control
Authors:Helen M Roberts
Institution:Institute of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, Wales SY23 3DB, UK
Abstract:Concern over anomalous fading has been the biggest single factor responsible for deterring the widespread use of the infra-red stimulated luminescence (IRSL) or thermoluminescence (TL) signal from feldspars for luminescence dating. There has therefore been great interest in the use of the recently proposed Post-IR IRSL signal, because it has been shown to significantly reduce the degree of anomalous fading observed in feldspars and therefore potentially provides a means of circumventing the issue. This study undertakes a systematic investigation into various preheat and Post-IR IRSL measurement conditions proposed in the literature, by using two samples from the Halfway House loess section in Alaska which bracket the Old Crow tephra which has been dated using fission track methods. Preheat plateau tests show a dramatic change in equivalent dose with Post-IR IRSL measurement conditions, and further tests reveal that these changes are driven by preheat temperature rather than Post-IR IR stimulation temperature. Dose recovery tests on laboratory-bleached material mimic the findings of the natural preheat plateau test data, and sensitivity change between the first and second Single Aliquot Regenerative dose (SAR) measurement cycle is found to be responsible. Comparison of the Post-IR IRSL ages with the independent age control shows that, for the samples in this study, the Post-IR IR signal stimulated at 290 °C is inappropriate for dating. However, use of lower preheat (250–300 °C) and Post-IR IR stimulation temperatures from 225 to 270 °C gave rise to ages which were in agreement with the independent age control.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号