Abstract: | The orientation relaxation behavior of a stretched side-chain liquid crystalline polymer (SCLCP) on a poly(vinyl alcohol) (PVA) film under strain was investigated through infrared dichroism at temperatures near its phase transitions. We found a reorientation of the aligned mesogens over the smectic to nematic transition of the SCLCP, changing the alignment from an initially, mechanically induced perpendicular orientation to a parallel orientation with respect to the film-stretching direction. This reorientation was found to be irreversible during subsequent nematic to smectic transition, with the parallel orientation preserved. We show that it is possible to stop the reorientation process by cooling the SCLCP back to its smectic phase just before the change in the alignment direction. Moreover, this interruption can result in a stable, zero macroscopic orientation of the mesogens in the stretched SCLCP, and a subsequent heating to the smectic-nematic transition allows the reorientation process to restart and to be completed. We discuss the possible mechanisms for this mesophase transition-induced reorientation and the factors that could influence the process. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1491–1499, 1997 |