首页 | 本学科首页   官方微博 | 高级检索  
     


Surface condition effects on flame impingement heat transfer
Authors:C.E. Baukal  B. Gebhart
Affiliation:Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
Abstract:Flame impingement heating is used in many industrial applications, including the heating and melting of both glass and metal. This heating process usually comprises multiple heat transfer mechanisms, such as forced convection, thermal radiation, and thermochemical heat release. However, little experimental data are available that can be used to determine the importance of each mechanism. This information would be useful for optimizing the heating process and for developing computer models. The objective of this study was to determine the relative importance of thermal radiation and to determine how the thermochemical heat release is affected by the surface properties of the target.This study investigated the heat transfer from oxygen-enhanced, natural gas flames (15 kW) impinging normal to a water-cooled metal disk (db = 135 mm) segmented into concentric calorimetric rings. Polished, untreated, and blackened surfaces were used to study emissivity effects. The heat flux to the blackened and polished surfaces was the highest and lowest, respectively. The flux to untreated surfaces was between the highest and lowest fluxes. The largest difference in the flux, between the polished and blackened surfaces, was only 9.8%. Catalyticity effects were investigated by using alumina-coated (nearly noncatalytic), untreated, and platinum-coated (highly catalytic) surfaces. The heat flux to platinum-coated surfaces was the highest. The fluxes to untreated surfaces were similar to those for alumina-coated surfaces. The largest difference in the flux, between the platinum-coated and the alumina-coated surfaces, was only 12%. Therefore, both nonluminous flame radiation and the thermochemical heat release from surface catalytic reactions were relatively small fractions of the total heat flux.
Keywords:combustion   heat transfer   flame inpingement   catalyticity   radiation   surface treatment
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号