首页 | 本学科首页   官方微博 | 高级检索  
     


Surface chemistry and catalysis of oxide model catalysts from single crystals to nanocrystals
Authors:Shilong Chen  Feng Xiong  Weixin Huang
Affiliation:Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, PR China
Abstract:Fundamental understandings of surface chemistry and catalysis of solid catalysts are of great importance for the developments of efficient catalysts and corresponding catalytic processes, but have been remaining as a challenge due to the complex nature of heterogeneous catalysis. Model catalysts approach based on catalytic materials with uniform and well-defined surface structures is an effective strategy. Single crystals-based model catalysts have been successfully used for surface chemistry studies of solid catalysts, but encounter the so-called “materials gap” and “pressure gap” when applied for catalysis studies of solid catalysts. Recently catalytic nanocrystals with uniform and well-defined surface structures have emerged as a novel type of model catalysts whose surface chemistry and catalysis can be studied under the same operational reaction condition as working powder catalysts, and they are recognized as a novel type of model catalysts that can bridge the “materials gap” and “pressure gap” between single crystals-based model catalysts and powder catalysts. Herein we review recent progress of surface chemistry and catalysis of important oxide catalysts including CeO2, TiO2 and Cu2O acquired by model catalysts from single crystals to nanocrystals with an aim at summarizing the commonalities and discussing the differences among model catalysts with complexities at different levels. Firstly, the complex nature of surface chemistry and catalysis of solid catalysts is briefly introduced. In the following sections, the model catalysts approach is described and surface chemistry and catalysis of CeO2, TiO2 and Cu2O single crystal and nanocrystal model catalysts are reviewed. Finally, concluding remarks and future prospects are given on a comprehensive approach of model catalysts from single crystals to nanocrystals for the investigations of surface chemistry and catalysis of powder catalysts approaching the working conditions as closely as possible.
Keywords:Corresponding author.  Structure-activity relation  Reaction mechanism  Surface structure  Crystal plane  Size  Metal-support interaction  Adsorption  Surface reaction  1D  one-dimensional  2D  two-dimensional  2PPE  two-photon photoemission spectroscopy  3D  three-dimensional  AC-HRTEM  aberration-corrected high-resolution transmission electron microscopy  AC-STEM  aberration-corrected scanning transmission electron microscopy  AC-TEM  aberration-corrected transmission electron microscopy  ADM  ad-molecule  AES  Auger electron spectroscopy  AFM  atomic force microscopy  AMR  added-and-missing row  AOM  add oxygen model  (N)AP-XPS  (near)-ambient pressure XPS  ATR  attenuated total reflection  BBO  bridge-bonded oxygen  CB  conduction band  DFT  density functional theory  DOS  density of states  DRIFTS  diffuse reflection infrared Fourier-transform spectroscopy  EELS  electron energy loss spectroscopy  Fermi level  EMSI  electronic metal–support interaction  EPR  electron paramagnetic resonance  ESD  electron-stimulated desorption  ETEM  environmental transmission electron microscopy  EXAFS  extended X-ray absorption fine structure spectroscopy  FM  Frank–van der Merwe  FTIR  Fourier-transform infrared spectroscopy  GC  gas chromatograph  HERFD-XAS  high energy resolution fluorescence detection X-ray absorption spectroscopy  bridging hydroxyls  HREELS  high-resolution electron energy loss spectroscopy  HRTEM  high-resolution transmission electron microscopy  IR  infrared spectroscopy  IRRAS  infrared reflection absorption spectroscopy  ISS  ion scattering spectroscopy  LEED  low energy electron diffraction  LEIS  low-energy ion scattering  MEIS  medium-energy ion scattering  ML  monolayer  MS  mass spectrometry  MvK  Mars van Krevelen  NC-AFM  non-contact atomic force microscopy  NC(s)  nanocrystal(s)  NEXAFS  near-edge X-ray absorption fine structure  NMR  nuclear magnetic resonance  NPs  nanoparticles  ODHP  oxidative dehydrogenation of propane  OSC  oxygen storage capacity  PALS  position annihilation life-time spectroscopy  PES  photoelectron spectroscopy  PhD  photoelectron diffraction  PM-IRRAS  polarization modulation-infrared reflection absorption spectroscopy  PROX  preferential oxidation  PSD  photo-stimulated desorption  Raman  Raman spectroscopy  RHEED  reflection high-energy electron diffraction  RPES  resonant photoelectron spectroscopy  SC(s)  single crystal(s)  SEM  scanning electron microscopy  SFG  sum frequency generation  SIMS  secondary ion mass spectroscopy  SK  Stranski-Krastanov  SMSI  strong metal-support interaction  SPM  scanning probe microscopy  STEM  scanning transmission electron microscopy  STM  scanning tunneling microscopy  SVUV-PIMS  synchrotron vacuum ultraviolet photoionization mass spectrometry  SXRD  surface X-ray diffraction  TEM  transmission electron microscopy  titanium(Ti) interstitial(s)  TOF  time of flight  TPD  temperature programmed desorption  TPR  temperature programmed reduction  TPRS  temperature programmed reaction spectroscopy  UHV  ultra-high vacuum  UPS  ultraviolet photoemission spectroscopy  UV  ultraviolet  UV–Vis  ultraviolet–visible spectroscopy  VB  valence band  oxygen (O) vacancy(ies)  VW  Volmer–Weber  WGS  water–gas shift  XANES  X-ray absorption near edge structure spectroscopy  XAS  X-ray absorption spectroscopy  XES  X-ray emission spectroscopy  XPS  X-ray photoelectron spectroscopy  XRD  X-ray diffraction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号