首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and reactivity of [(silox)2Mo=NR]2Hg (R=tBu, tAmyl; silox=OSitBu3): unusual thermal stability and ready nucleophilic cleavage rationalized by electronic factors
Authors:Rosenfeld Devon C  Wolczanski Peter T  Barakat Khaldoon A  Buda Corneliu  Cundari Thomas R  Schroeder Frank C  Lobkovsky Emil B
Affiliation:Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA.
Abstract:Treatment of (DME)Cl2Mo(=NR)2 (R=tBu, (1-tBu), tAmyl (1-tAmyl)) with 2 equiv of tBu3SiOH (siloxH) and 1 equiv of HCl produced (silox)2Cl2Mo=NR (R=tBu, (3-tBu), tAmyl (3-tAmyl)); subsequent reduction by Na/Hg afforded the Mo(V) chloride, (silox)2ClMo=NtBu (4-tBu), and the Mo(IV) mercury derivatives, [(silox)2Mo=NR]2Hg (R=tBu ((5-tBu)2Hg), tAmyl ((5-tAmyl)2Hg)). Reductions of 3-tBu and 3-tAmyl in the presence of L (L=PMe3, pyridine, 4-picoline) led to the isolation of adducts (silox)2(Me3P)Mo=NR (R=tBu (6-tBu), tAmyl (6-tAmyl)) and (silox)2L2Mo=NtBu (L=py (7-py), 4-pic (7-4-pic)). Single-crystal X-ray structural investigations of pseudo-tetrahedral 4-tBu, Hg-capped, pseudo-trigonal planar (5-tBu)2Hg, pseudo-tetrahedral 6-tBu, and trigonal bipyramidal 7-4-pic reveal that all possess a closed O-Mo-O angle when compared to the N=Mo-O angles. A molecular orbital rationale and supporting calculations suggest that this is a manifestation of the greater pi-donating ability of the imido relative to that of the siloxides. While the D(Mo-Hg) of [(HO)2Mo=NH]2Hg ((5')2Hg) was calculated to be 22.4 kcal/mol, (5-R)2Hg (R=tBu, tAmyl) are remarkably stable; (5-tBu)2Hg degraded in a first-order fashion with DeltaG=31.9(1) kcal/mol. In the presence of strong (L=PMe, pyridine, S8) or weak (L=2-butyne, ethylene, N2O, 1,4,7,10-tetrathiacyclododecane, 1,4,7,10,13,16-hexathiacyclooctadecane) nucleophiles, an enhanced rate of Mo-Hg bond cleavage was noted, with some of the former group generating adducts in <5 min; the products were 6-tBu, 7-py, (silox)2(S)Mo=NtBu (10-tBu), (silox)2Mo=NtBu(C2Me2) (8-tBu), (silox)2(C2H4)Mo=NtBu (11-tBu), (silox)2(O)Mo=NtBu (9-tBu), and a mixture of 10-tBu and 11-tBu, respectively. Some of these were independently prepared via substitution of 6-tBu. According to calculations and a molecular orbital rationale, dissociation of the Mo-Hg bond in (5-R)2Hg (R=tBu, tAmyl) is orbitally forbidden, and the addition of a nucleophile to the terminus of the Mo-Hg-Mo linkage mitigates the symmetry requirements. The mechanism of thermal degradation was studied with mixed success. NMR spectroscopy revealed imido exchange between (5-tBu)2Hg and (5-tAmyl)2Hg during an initial induction period and a subsequent rapid exchange period that implicated free 5-R (R=tBu, tAmyl). Further crossover studies revealed siloxide exchange as an additional complication.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号