首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Study on the intermolecular interaction of C60 and simulations on the orientational properties of C60 in crystals
Authors:Kita Yukiumi  Wako Kei  Goto Hiromitsu  Naito Takeshi  Kawai Hidemi  Okada Isamu
Institution:Graduate School of Integrated Science,Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
Abstract:We developed the new intermolecular interaction model of C(60) with the quantitative accuracy for the molecular orientational properties in crystals. The energy difference (DeltaE) and the activation barrier (E(barrier)) between the two stable orientations (P and H orientations) in crystals are in the values of +14.7 and +260 meV in our model, respectively; these values are in fairly good agreement with the experimental values (DeltaE approximately +11 meV, E(barrier)=+235-+290 meV in experiments). The relaxation calculation for C(60) crystals using our model revealed that there is the reversal of the stable orientations between the P and H orientations under the high H-orientation occupancy (p(H)) in crystals, when p(H)>0.83, DeltaE<0. From the molecular dynamics calculations for C(60) crystals using our model, it is found that the phase transition is induced at T(C)=200-260 K, which is consistent with the experimental value of 260 K. Immediately below T(C), we found a great variety of molecular rotational jumps involving that between the P and H orientations every about 10(-9) s due to the thermal activation. In the high temperature phase (>T(C)), all molecules rotate irregularly like in Brownian motion involving the rotational "slumber" for approximately 10(-12)-10(-11) s.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号