首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The role of TEOS‐TIP within a pentablock ionomer: Morphology,physical properties,and ion transport
Authors:Fei Huang  Wenjian Zheng  Armin Tahmasbi Rad  Mu‐Ping Nieh  Chris J Cornelius
Institution:1. Department of Chemical and Bimolecular Engineering, University of Nebraska, Lincoln, Nebraska;2. Institute of Materials Sciences, University of Connecticut, Storrs, Connecticut
Abstract:Inorganic–organic nanocomposites were created using tetraethylorthosilicate (TEOS), titanium isopropoxide (TIP), and poly(t‐butylstyrene‐b‐hydrogenated isoprene‐b‐sulfonated styrene‐b‐hydrogenated isoprene‐b‐t‐butylstyrene) or pentablock copolymer (PBC). A TEOS–TIP–H2O ternary phase diagram was generated to create homogenous sol solutions with designable condensation reactions that led to controllable materials. An inorganic TEOS–TIP network was synthesized using sol–gel chemistry within the organic PBC domain. All TEOS–TIP–PBC films exhibited higher water sorption than unmodified PBC ionomer that was attributed to a change in morphology. Proton conductivity increased up to 80% due to TEOS–TIP within the nanocomposite film. This can be attributed to ion domain redistribution and partial charge transfer from the titanate's inorganic domains to sulfonate groups that promote acid dissociation. PBC had a microphase‐separated morphology that changed with increasing TIP concentration, which was observed from atomic force microscopy and small‐angle X‐ray scattering results. Finally, thermal gravimetric analysis revealed a decrease in degradation temperature, and dynamic mechanical analysis results demonstrated reduced polymer chain mobility caused by inorganic–organic interactions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 575–586
Keywords:inorganic–  organic composite  ion conductivity  pentablock ionomer  physical properties  silicate–  titanate sol–  gel processing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号