Controlling degradation and branching reactions of polypropylene by different heteroaromatic ring derivatives |
| |
Authors: | Dong Wan Li Ma Zhenjiang Zhang Haiping Xing Lu Wang Zhiwei Jiang Guangchun Zhang Tao Tang |
| |
Affiliation: | a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China b Graduate School of the Chinese Academy of Sciences, Beijing 100039, China |
| |
Abstract: | Heteroaromatic ring derivatives with the CC bond conjugated with different five-membered heteroaromatic rings were used to adjust melt reaction of polypropylene (PP). The effect of heteroatoms in the five-membered rings and electron-attracting groups connecting with CC bond on restricting the β-scission of PP macroradicals and promoting the branching reaction between PP and trimethylol propane triacrylate (TMPTA) was studied. From the analysis of the results concerning molecular structures and melt properties, it was found that the electron density of the CC bond determined the reaction rate between PP macroradicals and heteroaromatic ring derivatives. 2-cyano-3-(furan-2-yl)-2-propenoic acid ethyl ester (CFA) and 2-(furan-2-ylmethylene)malononitrile (FN) had CC bonds with lower electron density, therefore they can quickly convert the tertiary PP macroradicals into resonance stabilized macroradicals. As a result, the β-scission of PP macroradicals and the homopolymerisation of TMPTA were restrained to some extent. Modified PP samples containing TMPTA, peroxide and CFA (or FN), which had the lower grafting degree of TMTPA, showed the most obvious change on the relaxation behaviour of polymer chains. |
| |
Keywords: | Degradation Heteroaromatic ring derivatives Melt reaction Polypropylene |
本文献已被 ScienceDirect 等数据库收录! |
|