首页 | 本学科首页   官方微博 | 高级检索  
     检索      


X-ray CT microtomography and mechanical response of foamed polysiloxane elastomers
Authors:Paul R Morrell  Mogon PatelSimon Pitts
Institution:Atomic Weapons Establishment, Aldermaston, Reading, Berkshire, England, UK
Abstract:3D X-ray computer microtomography (CT) experiments have been performed to assess the microstructure of scaled cellular polysiloxane elastomers and to predict how key morphological features alter as a function of compressive loading. In the work reported here, full scale (nominally 600 μm pore size) and half scale (nominally 300 μm pore size) polydimethylsiloxane foams (M97) were prepared using extractable urea particles, and tested. CT test methodology was developed to image foam microstructure at different levels of compression. 1D magnetic resonance imaging (MRI) experiments have also been performed on full scale foams for baseline characterisation. Material porosity, bulk density and dynamic mechanical analysis (DMA) stress/strain responses as a function of compression were recorded. Our results show that undesirable engineering stress responses are evident when the material microstructure (cell size and shape) is non-uniform and complex. This is particularly evident when non-spherical urea particles are used, leading to undesirable scaled foam microstructures with mechanical responses that do not match that shown by ‘full scale’ versions. Through the use of X-ray CT and MRI, our studies have provided insights into the link between manufacturing, polymer architecture (cell size/shape) and mechanical response of scaled M97 cellular materials. The data collected will support materials FEA (finite element model) code development activities, as well as help identify how the material architecture can be modified to achieve more controlled and uniform mechanical responses.
Keywords:3D X-ray tomography  GARField magnetic resonance  Polydimethyl siloxane  Compression
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号