Accounting for local capillary effects in two-phase flows with relaxed surface tension formulation in enriched finite elements |
| |
Authors: | Loïc Chevalier Julien Bruchon Nicolas Moulin Pierre-Jacques Liotier Sylvain Drapier |
| |
Affiliation: | Industrial Chair Hexcel – Mines Saint-Étienne, Centre SMS & LGF, UMR CNRS 5307, Mines de Saint-Étienne – Université de Lyon, 158, cours Fauriel, CS 62362, 42023 Saint-Étienne cedex 2, France |
| |
Abstract: | This paper introduces a numerical method able to deal with a general bi-fluid model integrating capillary actions. The method relies first on the precise computation of the surface tension force. Considering a mathematical transformation of the surface tension virtual work, the regularity required for the solution on the evolving curved interface is weakened, and the mechanical equilibrium of the triple line can be enforced as a natural condition. Consequently, contact angles of the liquid over the solid phase result naturally from this equilibrium. Second, for an exhaustive representation of capillary actions, pressure jumps across the interface must be accounted for. A pressure enrichment strategy is used to properly compute the discontinuities in both pressure and gradient fields. The resulting method is shown to predict nicely static contact angles for some test cases, and is evaluated on complex 3D cases. |
| |
Keywords: | Fibrous media Capillarity Surface tension Finite elements Level-set method |
本文献已被 ScienceDirect 等数据库收录! |
|