首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular dynamics simulation of shock compression of metals: Iron and iron-sulfur solutions
Authors:D K Belashchenko  O I Ostrovskii
Institution:1.National Research Technological University “Moscow Institute of Steel and Alloys,”,Moscow,Russia;2.University of New South Wales,Sydney,Australia
Abstract:The embedded atom model potential suggested earlier was improved to correctly describe iron at high pressures and temperatures. Correction was introduced using the shock compression data. The properties of body- and face-centered cubic (BCC and FCC) lattices and liquid iron at compression degrees up to 50% of the normal volume and temperatures up to 10000 K were calculated. At degrees of compression 0.7–0.6 and 0 K, the FCC lattice is thermodynamically stable. The temperature of fusion increases to ≈9700 K at compression to 50% of initial volume (pressure 585 GPa). The pressure of pure iron at 5000 K and density 12.5 g/cm3 is ≈250 GPa and is substantially lower than in the center of the Earth according to the geophysical data (360 GPa). An embedded atom model potential for a 10 at % solution of sulfur in iron which allows the properties of the melt in the center of the Earth to be described correctly is suggested; the viscosity of the melt under these conditions is not high (0.0156 Pa s); these results are close to those obtained in ab initio calculations. The possibility of partial Earth core crystallization is shown.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号