首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Crossed-beam study of Co+(3F4)+propane: experiment and density functional theory
Authors:Yi  Reichert  Holthausen  Koch  Weisshaar
Institution:Department of Chemistry, University of Wisconsin-Madison, 53706-1396, USA.
Abstract:A pulsed beam of Co+(3F4) crosses a pulsed beam of C3H8 or C3D8 gas under single collision conditions at collision energies of 0.01 eV and 0.21 eV. After a variable time delay t(ext) = 1-8 micros a fast high voltage pulse extracts product ions into a field-free flight tube for mass analysis. Consistent with earlier work, we observe prompt CoC3H6+ +H2 elimination products in 3:1 excess over CoC2H4+ +CH4 products at 0.21 eV on a 2-10 micros time scale. Long-lived CoC3H8+ complexes fragment predominantly back to Co+ +C3H8 reactants and to H2 elimination products on a 6-24 micros time scale. Density functional theory (B3LYP) calculations provide energies, geometries, and harmonic vibrational frequencies at key stationary points for use in a statistical rate model of the reaction. By adjusting two key multicenter transition state (MCTS) energies downward by 4-7 kcal mol(-1), we obtain good agreement with our decay time results and with the cross section versus collision energy of Armentrout and co-workers from 0.1-1.0 eV. B3LYP theory succeeds in finding relative energies of the MCTSs leading to CH4 and H2 in the proper order to explain the different product branching ratio for Co+ (which favors H2 over CH4) compared with its nearest neighbors Fe+ and Ni+ (which favor CH4 over H2).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号