首页 | 本学科首页   官方微博 | 高级检索  
     

基于元胞自动机考虑传播延迟的复杂网络病毒传播研究
引用本文:王亚奇,蒋国平. 基于元胞自动机考虑传播延迟的复杂网络病毒传播研究[J]. 物理学报, 2011, 60(8): 80510-080510. DOI: 10.7498/aps.60.080510
作者姓名:王亚奇  蒋国平
作者单位:南京邮电大学自动化学院,南京 210003
基金项目:国家自然科学基金 (批准号:60874091)、江苏省高等学校自然科学基础研究计划 (批准号:08KJD510022)、江苏省"六大人才高峰"计划 (批准号:SJ209006)、南京邮电大学引进人才计划 (批准号:NY209021)和江苏省高等学校研究生科研创新计划 (CX10B-193Z) 资助的课题.
摘    要:基于元胞自动机,研究传播延迟对复杂网络病毒传播动力学行为的影响,提出一种新的易染状态-感染状态-易染状态(SIS)传播模型.研究表明,传播延迟的存在显著降低了网络的传播临界值,增强了网络中病毒爆发的危险性.研究还发现,随着传播延迟的增大,病毒的感染程度以及传播速率都明显增大.此外,SIS传播模型不仅能够反映病毒的平均传播趋势,而且可以描述病毒随时间的动态演化过程以及病毒的爆发和消亡等概率事件,从而有效地克服了利用平均场方法构建的微分方程模型只能反映病毒平均传播趋势的局限性.同时,还给出有效控制网络中病毒传关键词:复杂网络病毒传播元胞自动机传播延迟

关 键 词:复杂网络  病毒传播  元胞自动机  传播延迟
收稿时间:2010-10-17

Epidemic spreading in complex networks with spreading delay based on cellular automata
Wang Ya-Qi and Jiang Guo-Ping. Epidemic spreading in complex networks with spreading delay based on cellular automata[J]. Acta Physica Sinica, 2011, 60(8): 80510-080510. DOI: 10.7498/aps.60.080510
Authors:Wang Ya-Qi and Jiang Guo-Ping
Affiliation:College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract:In this paper, based on the cellular automata, we propose a new susceptible-infected-susceptible (SIS) model to study epidemic spreading in the networks with spreading delay. Theoretical analysis and simulation results show that the existence of spreading delay can significantly reduce the epidemic threshold and enhance the risk of outbreak of epidemics. It is also found that both the epidemic prevalence and the propagation velocity increase obviously with the spreading delay increasing. Moreover, the SIS model proposed in this paper describes not only the average propagation tendency of epidemics, but also the dynamic evolution process over the time of epidemics and the probability events such as outbreak and extinction of epidemics, and thus can overcome the limitations of the differential equation model based on mean-field method that describes only the average transmitting tendency of epidemics. Meanwhile, some suggestions of how to effectively control the propagation of epidemics are presented.
Keywords:complex network  epidemic spreading  cellular automata  spreading delay
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号