首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Development of an osteoblast-based 3D continuous-perfusion microfluidic system for drug screening
Authors:Kihoon Jang  Kae Sato  Kazuyo Igawa  Ung-il Chung  Takehiko Kitamori
Institution:(1) Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan;(2) Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan;(3) Center for NanoBio Integration, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan;(4) Division of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655, Japan;(5) Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
Abstract:In this work, we demonstrated that biological cells could be cultured in a continuous-perfusion glass microchip system for drug screening. We used mouse Col1a1GFP MC-3T3 E1 osteoblastic cells, which have a marker gene system expressing green fluorescent protein (GFP) under the control of osteoblast-specific promoters. With our microchip-based cell culture system, we realized automated long-term monitoring of cells and sampling of the culture supernatant system for osteoblast differentiation assay using a small number of cells. The system successfully monitored cells for 10 days. Under the 3D microchannel condition, shear stress (0.07 dyne/cm2 at a flow rate of 0.2 μL/min) was applied to the cells and it enhanced the GFP expression and differentiation of the osteoblasts. Analysis of alkaline phosphatase (ALP), which is an enzyme marker of osteoblasts, supported the results of GFP expression. In the case of differentiation medium containing bone morphogenetic protein 2, we found that ALP activity in the culture supernatant was enhanced 10 times in the microchannel compared with the static condition in 48-well dishes. A combined system of a microchip and a cell-based sensor might allow us to monitor osteogenic differentiation easily, precisely, and noninvasively. Our system can be applied in high-throughput drug screening assay for discovering osteogenic compounds.
Keywords:Bioassays  Cell systems  Microfluidics  Osteoblast  Shear stress  Differentiation
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号