首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Macroporous composite capacitive bioanode applied in microbial fuel cells
Authors:Yuyang Wang  Hongtao Zheng  Ye Chen  Qing Wen  Jiansong Wu
Institution:Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 15001, China; College of Power and Energy Engineering, Harbin Engineering University, Harbin 15001, China; College of Light Industry, Harbin University of Commerce, Harbin 15001, China; Department of Infection Diseases, General Hospital of the PLA Rocket Force, Beijing 10088, China
Abstract:Interfacial electron transfer between electroactive biofilm and the electrode was crucial step for microbial fuel cells (MFCs). A three-dimensional multilayer porous sponge coating with nitrogen-doped carbon nanotube/polyaniline/manganese dioxide (S/N-CNT/PANI/MnO2) electrode has been developed for MFC anode. Here, the S/N-CNT/PANI/MnO2 anode can function as a biocapacitor, able to store electrons generated from the degradation of organic substrate under the open circuit state and release the accumulated electrons upon requirement. Thus, the mismatching of the production and demand of the electricity can be overcome. Comparing with the sponge/nitrogen-doped carbon nanotube (S/N-CNT) bioanode, S/N-CNT/PANI/MnO2 capacitive bioanode displays a strong interaction with the microbial biofilm, advancing the electron transfer from exoelectrogens to the bioanode. The maximum power density of MFC with S/N-CNT/PANI/MnO2 capacitive bioanode is 1019.5 mW/m2, which is 2.2 and 5.8 times as much as that of S/N-CNT/MnO2 bioanode and S/N-CNT bioanode (470.7 mW/m2 and 176.6 mW/m2), respectively. During the chronoamperometric experiment with 60 min of charging and 20 min of discharging, the S/N-CNT/PANI/MnO2 capacitive bioanode was able to store 10743.9 C/m2, whereas the S/N-CNT anode was only able to store 3323.4 C/m2. With a capacitive bioanode, it is possible to use the MFC simultaneously for production and storage of electricity
Keywords:Capacitive bioanode  Three-dimensional hierarchical composite  Microbial fuel cell  Energy storage  Porous sponge  
本文献已被 CNKI 维普 ScienceDirect 等数据库收录!
点击此处可从《中国化学快报》浏览原始摘要信息
点击此处可从《中国化学快报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号