首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Compositional effects on electrophoretic and chromatographic figures of merit in electrokinetic chromatography with cetyltrimethylammonium bromide/sodium octyl sulfate vesicles as the pseudostationary phase. Part 1: effect of the phase ratio
Authors:Foley Joe P  Hong Mei  Polinko Michelle A  Pascoe Robert J  Ahuja Eric S
Institution:Department of Chemistry, Drexel University, Philadelphia, PA, USA. jfoley@drexel.edu
Abstract:The effect of the phase ratio on the electrophoretic and chromatographic properties of unilamellar vesicles comprised of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS) was investigated in EKC. The surfactant concentration of the vesicles was 0.9, 1.2, 1.5, and 1.8% w/v, with a mole ratio of 1:3.66 (CTAB/SOS). Results were compared to those obtained using SDS micelles at concentrations of 1.0% (w/v, 35 mM) and 1.5% (52 mM). The CTAB/SOS vesicles (0.9-1.8% w/v) provided a significantly larger elution range (5.7 < or = t(ves)/t(0) < or = 8.7) and greater hydrophobic (methylene) selectivity (2.8 < or = alpha(CH2) < or = 3.1) than SDS micelles (3.1 < or = t(mc)/t(0) < or = 3.3; alpha(CH2) = 2.2). Whereas the larger elution range can be attributed to the 25% reduction in EOF due to the interaction of unaggregated CTAB cations and the negatively charged capillary wall, the higher methylene selectivity is likely due to the lower concentration of water expected in the CTAB/SOS vesicle bilayer compared to the Palisades layer of SDS micelles. For a given phase ratio, CTAB/SOS vesicles are somewhat less retentive than SDS micelles, although retention factors comparable to those observed in 1.0-1.5% SDS can be obtained with 1.5-1.8% CTAB/SOS. A linear relationship was observed between phase ratio and retention factor, confirming the validity of the phase ratio model for these vesicles. Unique polar group selectivities and positional isomer shape selectivities were obtained with CTAB/SOS vesicles, with both types of selectivities being nearly independent of the phase ratio. For four sets of positional isomers, the elution order was always para < ortho < meta. Finally, the thermodynamics of solute retention was qualitatively similar to that reported for other surfactant aggregates (micelles and microemulsions); the enthalpic contribution to retention was consistently favorable for all compounds, whereas the entropic contribution was favorable only to hydrophobic solutes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号