首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spectroscopic and structural characterization of the [Fe(imidazole)(6)](2+) cation
Authors:Carver Graham  Tregenna-Piggott Philip L W  Barra Anne-Laure  Neels Antonia  Stride John A
Institution:Department of Chemistry, University of Bern, Freiestrasse 3, Bern 9, CH-3000 Switzerland.
Abstract:Spectroscopic, structural, and magnetic data are presented for Fe(C(3)H(4)N(2))(6)(NO(3))(2), which facilitate a precise definition of the electronic and molecular structure of the Fe(Im)(6)](2+) cation. The structure was determined at 120(1) K by X-ray diffraction methods. The salt crystallizes in the trigonal space group R3 with unit-cell parameters a = 12.4380(14) A, c = 14.5511(18) A, and Z = 3. All the imidazole ligands are equivalent with an Fe-N bond distance of 2.204(1) A. Variable-temperature inelastic neutron scattering (INS) measurements identify a cold magnetic transition at 19.4(2) cm(-1) and a hot transition at 75.7(6) cm(-1). The data are interpreted using a ligand field Hamiltonian acting in the weak-field (5)D basis, from which the diagonal trigonal field splitting of the (5)T(2g) (O(h)) term is estimated as approximately 485 cm(-1), with the (5)A(g) (S(6)) component lower lying. High-field multifrequency (HFMF) EPR data and measurements of the magnetic susceptibility are also reported and can be satisfactorily modeled using the energies and wave functions derived from analysis of the INS data. The electronic and molecular structures are related through angular overlap model calculations, treating the imidazole ligand as a weak pi-donor.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号