首页 | 本学科首页   官方微博 | 高级检索  
     检索      


2D shape optimization under proximity constraints by CFD and response surface methodology
Institution:Institute of Technology, Environment and Business at Turku University of Applied Sciences, Sepankatu 1, Turku 20700, Finland
Abstract:In this paper we consider two-dimensional CFD-based shape optimization in the presence of obstacles, which introduce nontrivial proximity constraints to the optimization problem. Built on Gregory’s piecewise rational cubic splines, the main contribution of this paper is the introduction of such parametric deformations to a nominal shape that are guaranteed to satisfy the proximity constraints. These deformed shape candidates are then used in the identification of a multivariate polynomial response surface; proximity-constrained shape optimization thus reduces to parametric optimization on this polynomial model, with simple interval bounds on the design variables. We illustrate the proposed approach by carrying out lift and/or drag optimization for the NACA 0012 airfoil containing a rectangular fuel tank: By identifying polynomial response surfaces using a large batch of 1800 design candidates, we conclude that the lift coefficient can be optimized by a linear model, whereas the drag coefficient can be optimized by using a quadratic model. Higher order polynomial models yield no improvement in the optimization.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号