首页 | 本学科首页   官方微博 | 高级检索  
     


Natural laminar flow shape optimization in transonic regime with competitive Nash game strategy
Affiliation:1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;2. AVIC Aerodynamics Research Institute, Haerbin 15001, China
Abstract:The Natural Laminar Flow (NLF) airfoil/wing design optimization is an efficient method which can reduce significantly turbulence skin friction by delaying transition location at high Reynolds numbers. However, the reduction of the friction drag is competitively balanced with the increase of shock wave induced drag in transonic regime. In this paper, a distributed Nash Evolutionary Algorithms (EAs) is presented and extended to multi-level parallel computing, namely multi-level parallel Nash EAs. The proposed improved methodology is used to solve NLF airfoil shape design optimization problem. It turns out that the optimization method developed in this paper can easily capture a Nash Equilibrium (NE) between transition delaying and wave drag increasing. Results of numerical experiments demonstrate that both wave drag and friction drag performances of a NE are greatly improved. Moreover, performance of the NE is equivalent to that of cooperative Pareto-optimum solutions, but it is more efficient in terms of CPU time. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号