首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An improved dissipative particle dynamics scheme
Institution:1. Computational Engineering and Science Research Centre, School of Mechanical and Electrical Engineering, University of Southern Queensland, Toowoomba QLD 4350, Australia;2. Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
Abstract:Dissipative particle dynamics (DPD) and smoothed dissipative particle dynamics (sDPD) have become most popular numerical techniques for simulating mesoscopic flow phenomena in fluid systems. Several DPD/sDPD simulations in the literature indicate that the model fluids should be designed with their dynamic response, measured by the Schmidt number, in a relevant range in order to reach a good agreement with the experimental results. In this paper, we propose a new dissipative weighting function (or a new kernel) for the DPD (or the sDPD) formulation, which allows both the viscosity and the Schmidt number to be independently specified as input parameters. We also show that some existing dissipative functions/kernels are special cases of the proposed one, and the imposed viscosity of the present DPD/sDPD system has a lower and upper limit. Numerical verification of the proposed function/kernel is conducted in viscometric flows.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号