首页 | 本学科首页   官方微博 | 高级检索  
     


Point defects and orientation-dependent transport of matter and charge in iron-containing olivines
Authors:T.-L. TsaiK.-D. Becker  R. Dieckmann
Affiliation:
  • a Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, NY 14853-1501, USA
  • b Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
  • Abstract:The variation of the oxygen content, xO, of synthetic fayalite (Fe2SiO4) single crystals was investigated thermogravimetrically at 1130 °C as a function of the oxygen activity, aO2 (= PO2/PO2° ≈ fO2/fO2° with PO2° ≈ fO2° = 1 bar ≈ 1 atm). It was found that xO varies less in fayalite single crystals than in polycrystalline Fe2SiO4 studied earlier. The majority defects are most likely cation vacancies, (VMe2+)″, ferric ions on M-sites, (Fe3+Me2+)radical dot, and ferric ions on Si-sites, (Fe3+Si4+)′. Furthermore, the diffusion of iron in synthetic olivine single crystals ((FexMg1 − x)2SiO4) was studied at 1130 °C as a function of orientation, oxygen activity, and cationic composition. The observed oxygen activity dependencies suggest that cations move via different types of cation vacancies, most likely isolated vacancies, (VFe2+)″, and possibly neutral associates, {2(Fe3+Me2+)radical dot ⋅ (VMe2+)′ ? ′}x, the latter being minority defects. In addition, the electrical conductivity, σ, of fayalite single crystals was investigated as a function of orientation and oxygen activity within the stability field of fayalite at 1130 °C. The observed oxygen activity dependencies are compatible with (VMe2+)′ ? ′, (Fe3+Me2+)radical dot, and (Fe3+Si4+)′ being the majority point defects at high aO2 and with h and e′ as the majority defects at low aO2. The electrical conduction in fayalite is governed by contributions of electrons and holes. This extended point defect model for fayalite is also compatible with data for the variation of the oxygen content and for the iron tracer diffusion.
    Keywords:Olivine   (FexMg  &minus     x)2SiO4   Fe2SiO4   Point defects   Diffusion   Electrical conduction
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号