首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solutions for effective shear properties in three phase sphere and cylinder models
Authors:RM Christensen  KH Lo
Institution:Chemistry and Materials Science Department, Lawrence Livermore Laboratory, University of California, P.O. Box 808, Livermore, CA 94550, U.S.A.;Shell Development Company, P.O. Box 1380, Houston, TX 77001, U.S.A.
Abstract:Solutions are presented for the effective shear modulus of two types of composite material models. The first type is that of a macroscopically isotropic composite medium containing spherical inclusions. The corresponding model employed is that involving three phases: the spherical inclusion, a spherical annulus of matrix material and an outer region of equivalent homogeneous material of unlimited extent. The corresponding two-dimensional, polar model is used to represent a transversely isotropic, fiber reinforced medium. In the latter case only the transverse effective shear modulus is obtained. The relative volumes of the inclusion phase to the matrix annulus phase in the three phase models are taken to be the given volume fractions of the inclusion phases in the composite materials at large. The results are found to differ from those of the well-known Kerner and Hermans formulae for the same models. The latter works are now understood to violate a continuity condition at the matrix to equivalent homogeneous medium interface. The present results are compared extensively with results from other related models. Conditions of linear elasticity are assumed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号