首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Controlling qubit arrays with anisotropic XXZ Heisenberg interaction by acting on a single qubit
Authors:R Heule  C Bruder  D Burgarth  V M Stojanović
Institution:1.Department of Physics, University of Basel,Basel,Switzerland;2.Institute for Mathematical Sciences,Imperial College London,UK;3.QOLS, The Blackett Laboratory,Prince Consort Road,UK
Abstract:We investigate anisotropic XXZ Heisenberg spin-1 / 2 chains with control fields acting on one of the end spins, with the aim of exploring local quantum control in arrays of interacting qubits. In this work, which uses a recent Lie-algebraic result on the local controllability of spin chains with “always-on” interactions, we determine piecewise-constant control pulses corresponding to optimal fidelities for quantum gates such as spin-flip (NOT), controlled-NOT (CNOT), and square-root-of-SWAP (). We find the minimal times for realizing different gates depending on the anisotropy parameter Δ of the model, showing that the shortest among these gate times are achieved for particular values of Δ larger than unity. To study the influence of possible imperfections in anticipated experimental realizations of qubit arrays, we analyze the robustness of the obtained results for the gate fidelities to random variations in the control-field amplitudes and finite rise time of the pulses. Finally, we discuss the implications of our study for superconducting charge-qubit arrays.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号