首页 | 本学科首页   官方微博 | 高级检索  
     

基于多目标优化NSGA2改进算法的结构动力学模型确认
引用本文:赖文星,邓忠民,张鑫杰. 基于多目标优化NSGA2改进算法的结构动力学模型确认[J]. 计算力学学报, 2018, 35(6): 669-674
作者姓名:赖文星  邓忠民  张鑫杰
作者单位:北京航空航天大学 宇航学院, 北京 100191,北京航空航天大学 宇航学院, 北京 100191,北京航空航天大学 宇航学院, 北京 100191
基金项目:国家自然科学基金(11772018)资助项目.
摘    要:传统结构动力学模型确认方法通常采用单目标优化,存在精度不足和稳定性差等缺点,难以满足实际工程需求。基于此,提出一种采用神经网络作为代理模型,建立以马氏距离和鲁棒性为不确定性量化指标的多目标优化模型,并将NSGA2多目标进化算法用于求解。针对NSGA2存在无法有效识别伪非支配解、计算效率低和解集质量较差等设计缺陷,提出一种基于支配强度的NSGA2改进算法INSGA2-DS。INSGA2-DS将支配强度引入非支配排序,采用新型拥挤距离公式和自适应精英保留策略,以提高收敛效率和解集质量。GARTEUR飞机算例的仿真结果表明,INSGA2-DS求解复杂工程问题时具有更好的收敛性和分布性,而考虑鲁棒性的结构动力学模型确认方法可以获得同时满足多种目标要求的Pareto解集,提高了模型确认的精度和稳定性。

关 键 词:NSGA2  模型确认  结构动力学  鲁棒性  多目标优化
收稿时间:2017-08-28
修稿时间:2017-10-08

Structural dynamics model validation based on NSGA2 improved algorithm
LAI Wen-xing,DENG Zhong-min,ZHANG Xin-jie. Structural dynamics model validation based on NSGA2 improved algorithm[J]. Chinese Journal of Computational Mechanics, 2018, 35(6): 669-674
Authors:LAI Wen-xing  DENG Zhong-min  ZHANG Xin-jie
Affiliation:School of Astronautics, Beihang University, Beijing 100191, China,School of Astronautics, Beihang University, Beijing 100191, China and School of Astronautics, Beihang University, Beijing 100191, China
Abstract:The traditional structural dynamics model validation methods usually use single-objective optimization.Due to poor accuracy and stability,it is difficult to meet the actual engineering needs.This paper uses neural network as agent model,and establishes multi-objective optimization model with Mahalanobis distance and robustness as optimization targets,which is solved by NSGA2.Since NSGA2 has some design defects,such as ineffectiveness in identifying pseudo non-dominant individuals,low efficiency,poor convergence and distribution,this paper proposes an improved NSGA2 algorithm based on dominant strength (INSGA2-DS).INSGA2-DS introduces dominant strength to non-dominated sorting method,and adopts a new crowding distance formula and the adaptive elitist retention strategy to improve the convergence efficiency and Pareto solution quality.The simulation results of GARTEUR airplane show that INSGA2-DS has better convergence and distribution when solving complex engineering problems.The structural dynamics model validation method considering robustness can provide a variety of Pareto solution sets which satisfy different target requirements,and improve the accuracy and stability of model validation.
Keywords:NSGA2  model validation  structural dynamics  robustness  multi-objective optimization
本文献已被 CNKI 等数据库收录!
点击此处可从《计算力学学报》浏览原始摘要信息
点击此处可从《计算力学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号