首页 | 本学科首页   官方微博 | 高级检索  
     


On the use of double cross-validation for the combination of proteomic mass spectral data for enhanced diagnosis and prediction
Authors:B.J.A. Mertens  Y.E.M. van der BurgtB. Velstra  W.E. MeskerR.A.E.M. Tollenaar  A.M. Deelder
Affiliation:
  • a Department of Medical Statistics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
  • b Department of Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
  • c Department of Biomolecular Mass Spectrometry, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
  • Abstract:We consider a proteomic mass spectrometry case-control study for the calibration of a diagnostic rule for the detection of early-stage breast cancer. For each patient, a pair of two distinct mass spectra is recorded, each of which is derived from a different prior fractionation procedure on the available patient serum. We propose a procedure for combining the distinct spectral expressions from patients for the calibration of a diagnostic discriminant rule. This is achieved by first calibrating two distinct prediction rules separately, each on only one of the two available spectral data sources. A double cross-validatory approach is used to summarize the available spectral data using the two classifiers to posterior class probabilities, on which a combined predictor can be calibrated.
    Keywords:Clinical mass spectrometry proteomics   Predictive data fusion   Double cross-validation   Classification   Model combination
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号