首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A computational model of viscoplasticity and ductile damage for impact and penetration
Institution:1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, PR China;2. Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
Abstract:A coupled constitutive model of viscoplasticity and ductile damage for penetration and impact related problems has been formulated and implemented in the explicit finite element code LS-DYNA. The model, which is based on the constitutive model and fracture strain model of Johnson and Cook, and on continuum damage mechanics as proposed by Lemaitre, includes linear thermoelasticity, the von Mises yield criterion, the associated flow rule, non-linear isotropic strain hardening, strain-rate hardening, temperature softening due to adiabatic heating, isotropic ductile damage and failure. For each of the physical phenomena included in the model, one or several material constants are required. However, all material constants can be identified from relatively simple uniaxial tensile tests without the use of numerical simulations. In this paper the constitutive model is described in detail. Then material tests for Weldox 460 E steel and the calibration procedure are presented and discussed. The calibrated model is finally verified and validated through numerical simulations of material and plate perforation tests investigated experimentally.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号