首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular simulation and experimental characterisation of monotropic and enantiotropic polymers containing azobenzene and diphenyl mesogens
Institution:1. Department of Chemical and Metallurgical Engineering, Royal Melbourne Institute of Technology, GPO Box 2476V, Melbourne, Victoria 3001, Australia;2. Department of Applied Chemistry, Royal Melbourne Institute of Technology, GPO Box 2476V, Melbourne, Victoria 3001, Australia;3. Department of Macromolecules, Technical University of Iasi, Iasi 6600, Romania;1. College of Chemistry, Sichuan University, Chengdu, 610064, China;2. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, P.O. Box 919-987, China;1. Selcuk University, Faculty of Sciences, Department of Physics, Campus, Konya, Turkey;2. Sinop University, Department of Energy Systems, Faculty of Engineering & Architecture, Sinop 57000, Turkey;3. University Hassan II of Casablanca, Morocco;4. UIT – University Ibn Tofail, Kenitra, Morocco;5. LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 ANGERS cedex, France;1. Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain;2. Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano 121, 28006 Madrid, Spain;4. Cells-Alba, Carretera, BP 1413, 08290 Cerdanyola del Vallès, Barcelona, Spain
Abstract:Molecular simulation techniques have been applied to previously synthesised liquid crystalline polymers containing azobenzene and diphenyl mesogenic groups within the chain. Single chains and amorphous unit cells of aromatic polymers with a degree of polymerisation of 4–16 and containing propylene and diethyletheric (oxydiethylene) spacers were used. The energy was minimised and then molecular dynamics were performed for 1000 ps at seven temperatures between 10 and 600 K. The axial ratio or coefficient of asymmetry was calculated from computer-generated structures. The predictive capability of the orientational order parameter was used to estimate the degree of orientation and the liquid crystalline–isotropic transition temperature of the polymers. The simulated results for the monotropic polymers agreed very well with Maier–Saupe mean field theory and experimental data, though the enantiotropic polymer did not show a good agreement. The predicted glass transition and decomposition temperatures of the simulated polymers are also reported.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号