首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Strategies for multiscale modeling and simulation of organic materials: polymers and biopolymers
Institution:1. Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China;2. School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
Abstract:Advances in theory and methods are making it practical to consider fully first principles (de novo) predictions of structures, properties and processes for organic materials. However, despite the progress there remains an enormous challenge in bridging the vast range of distances and time scales between de novo atomistic simulations and the quantitative continuum models for the macroscopic systems essential in industrial design and operations. Recent advances relevant to such developments include: quantum chemistry including continuum solvation and force field embedding, de novo force fields to describe phase transitions, molecular dynamics (MD) including continuum solvent, non equilibrium MD for rheology and thermal conductivity and mesoscale simulations. To provide some flavor for the opportunities we will illustrate some of the progress and challenges by summarizing some recent developments in methods and their applications to polymers and biopolymers. Four different topics will be covered: (1) hierarchical modeling approach applied to modeling olfactory receptors, (2) stabilization of leucine zipper coils by introduction of trifluoroleucine, (3) modeling response of polymers sensors for electronic nose, and (4) diffusion of gases in amorphous polymers.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号