首页 | 本学科首页   官方微博 | 高级检索  
     


Magnetic exchange interactions in cyano‐bridged MoIII binuclear complexes: Broken‐symmetry and density functional theory calculations
Authors:Yi‐Quan Zhang  Cheng‐Lin Luo  Zhi Yu
Abstract:Molecular magnetism in cyano‐bridged MoIII binuclear complexes [Mo2(CN)11]5? and [(Me3tacn)2Mo2(CN)5]+ (Me3tacn?N, N′, N″‐trimethyl‐1,4,7‐triazacyclononane) has been calculated using Becke's three‐parameter exchange functional and the gradient‐corrected functional of Lee, Yang, and Parr (B3LYP), a hybrid density functional theory (DFT), combined with a modified broken symmetry (BS) approach and the post–Hartree‐Fock (post‐HF) method difference‐dedicated configuration interaction (DDCI). We find B3LYP combined with broken‐symmetry approach (DFT‐BS) give the similar J values to those calculated by DDCI. So we use B3LYP combined with BS approach to investigate the magnetism above two molecules. Through calculations, we find that the absolute J values decrease with the increase of r (the Mo(2)‐Cbrid and Mo(1)‐Nbrid distances) and are linearly related to the differences of the squared spin populations [(ρurn:x-wiley:00207608:media:QUA20381:tex2gif-stack-1 ? ρurn:x-wiley:00207608:media:QUA20381:tex2gif-stack-2)] on MoIII atoms between the highest‐spin (HS) state and the broken symmetry (BS) state. Moreover, the absolute J values are linearly related to the sum of the square of the difference in energy of the unpaired electrons (ξ) with a limited variation of the r distance. We conclude that ξ can be used to scale the degree of the antiferromagnetic coupling interactions. At the end of the paper, the spin density distributions and the mechanisms of magnetic coupling interactions are analyzed by us. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005
Keywords:molecular magnetism  DFT‐BS  DDCI  spin density  cyano‐bridged
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号