Abstract: | The wall stresses and insert load in a two‐dimensional flat‐bottomed bin with a flow corrective insert were investigated. The static wall stress distributions produced by the granular solids were measured and compared with the theoretical prediction using the differential slice method. The variations in the dynamic wall stresses and the dynamic response of the insert load with time were obtained. The comparison of the experimental insert load to the theoretical prediction was demonstrated. In addition, the effect of the flow corrective insert upon the wall stress and insert load was investigated. As the insert half‐angle increases, the effect of disrupting the contact force network above the insert decreases, and the insert load produced by the granular solids increases. Employing the results obtained using stress measurements, the pulsation phenomena of wall stress and insert load in a bin with a triangle flow corrective insert may be further understood. |