首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of piezoelectric PVDF polymers for use in space environments. II. Effects of atomic oxygen and vacuum UV exposure
Authors:Tim R. Dargaville  Mathew Celina  Jeffrey W. Martin  Bruce A. Banks
Abstract:The effects of atomic oxygen (AO) and vacuum UV radiation simulating low Earth orbit conditions on two commercially available piezoelectric polymer films, poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride‐trifluoroethylene) P(VDF‐TrFE), have been studied. Surface erosion and pattern development are significant for both polymers. Erosion yields were determined as 2.8 × 10?24 cm3/atom for PVDF and 2.5 × 10?24 cm3/atom for P(VDF‐TrFE). The piezoelectric properties of the residual material of both polymers were largely unchanged after exposure, although a slight shift in the Curie transition of the P(VDF‐TrFE) was observed. A lightly cross‐linked network was formed in the copolymer presumably because of penetrating vacuum ultraviolet (VUV) radiation, while the homopolymer remained uncross‐linked. These differences were attributed to varying degrees of crystallinity and potentially greater absorption, and hence damage, of VUV radiation in P(VDF‐TrFE) compared with PVDF. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2503–2513, 2005
Keywords:atomic oxygen  space environment  vacuum ultraviolet radiation  vinylidene fluoride
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号