Abstract: | Glycidyl methacrylate (GMA) functionalized acrylonitrile‐butadiene‐styrene (ABS) copolymers have been prepared via an emulsion polymerization process. The epoxy‐functionalized ABS (e‐ABS) particles were used to toughen nylon‐6. Molau tests and FTIR results showed the reactions between nylon‐6 and e‐ABS have taken place. Scanning electron microscopy (SEM) displayed the compatibilization reaction between epoxy groups of e‐ABS and nylon‐6 chain ends (amine or carboxyl groups), which improve disperse morphology of e‐ABS in the nylon‐6 matrix. The presence of only a small amount of GMA (1 wt %) within the e‐ABS copolymer was sufficient to induce a pronounced improvement of the impact strength of nylon‐6 blends; whereas further increase of the GMA contents in e‐ABS resulted in lower impact strength because of the crosslinking reaction between nylon‐6 and e‐ABS, resulting in agglomeration of the ABS particles. SEM results showed shear yielding of the nylon‐6 matrix and cavitation of rubber particles were the major toughening mechanisms. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2170–2180, 2005 |