首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Surface segregation in polymer blends and interpolymer complexes with increasing hydrogen bonding interactions
Authors:Shiyong Liu  Chi‐Ming Chan  Lu‐Tao Weng  Ming Jiang
Abstract:The evolution of surface composition in polymer blends and interpolymer complexes was studied using X‐ray photoelectron spectroscopy (XPS) and Time‐of‐Flight secondary ion mass spectroscopy (ToF‐SIMS). For immiscible and miscible poly(styrene‐co‐4‐vinyl phenol)/poly(styrene‐co‐4‐vinyl pyridine) (STVPh/STVPy) blends, surface enrichment by the lower surface energy component STVPh was always observed. Increasing VPh contents in STVPh from 0 to 16 mol % spans the transition from immiscible to miscible blends; the differences in surface free energies between STVPh and STVPy decreased, but surface enrichment of STVPh continued to increase. This is due to the strong hydrogen bonded self‐association of STVPh, which dominates over the immiscibility to miscibility transition in controlling the surface composition. In the immiscible and miscible blends, decreasing the molecular weights of STVPy, which decreased the surface free energy of STVPy, systematically reduced surface enrichment by STVPh. For STVPh/STVPy complexes formed at VPh contents higher than 21 mol %, surface enrichment of STVPh is barely detectable. STVPh and STVPy form a new supramolecular species. Interpolymer complexation is now the decisive factor controlling the surface composition, dominating over the surface free energy differences; the effect of STVPy molecular weight variation on the surface composition is also negligible for the interpolymer complexes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1924–1930, 2005
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号