首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enzymatic and catalytic reduction of dinitrogen to ammonia: Density functional theory characterization of alternative molybdenum active sites
Authors:Zexing Cao  Zhaohui Zhou  Huilin Wan  Qianer Zhang
Abstract:We used density functional calculations to model dinitrogen reduction by a FeMo cofactor containing a central nitrogen atom and by a Mo‐based catalyst. Plausible intermediates, reaction pathways, and relative energetics in the enzymatic and catalytic reduction of N2 to ammonia at a single Mo center are explored. Calculations indicate that the binding of N2 to the Mo atom and the subsequent multiple proton–electron transfer to dinitrogen and its protonated species involved in the conversion of N2 are feasible energetically. In the reduction of N2 the Mo atom experiences a cycled oxidation state from Mo(IV) to Mo(VI) by nitrogenase and from Mo(III) to Mo(VI) by the molybdenum catalyst, respectively, tuning the gradual reduction of N2. Such a wide range of oxidation states exhibited by the Mo center is crucial for the gradual reduction process via successive proton–electron transfer. Present results suggest that the Mo atom in the N‐centered FeMo cofactor is a likely alternative active site for dinitrogen binding and reduction under mild conditions once there is an empty site available at the Mo site. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005
Keywords:density functional calculations  nitrogenase  FeMo cofactor  molybdenum  nitrogen fixation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号