首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cobalt(II) octanoate and cobalt(II) perfluorooctanoate catalyzed atom transfer radical polymerization of styrene in toluene and fluorous media—A versatile route to catalyst recycling and oligomer formation
Authors:Marc‐Stephan Weiser  Rolf Mülhaupt
Abstract:Cobalt(II) perfluorooctanoate‐catalyzed atom transfer radical polymerization (ATRP) and reverse ATRP were developed to prepare oligostyrenes (Mn < 2500) with low polydispersities Mw/Mn < 1.5. Fluorous biphase catalysis was applied for effective recycling of catalyst and fluorous solvent. The homogeneous polymerization reaction was performed at 90 °C in toluene/cyclohexane/perfluorodecalin mixture (1:1:1) and fluorine‐free solvents. Temperature‐induced phase separation of this fluorous solvent mixture occurred at room temperature and proved to be the key for the very effective separation of the cobalt(II) perfluorooctanoate from the oligostyrene and fluorine‐free solvents. Both the fluorine‐tagged cobalt catalysts and the fluorous media were recycled and reused up to three times without encountering catalyst activity losses. The roles of cobalt catalysts, fluorous media, and monomer/initiator ratio were examined with respect to the polymerization kinetics. Fluorine‐containing and fluorine‐free cobalt(II) octanoate catalyzed controlled styrene oligomerization according to the ATRP mechanism. The molar mass control range was limited in fluorous biphase catalysis most likely because of precipitation of high molar mass polystyrenes in the fluorous reaction medium. To the best of our knowledge, this is the first time temperature‐induced phase separation of fluorous and fluorine‐free solvents has been successfully applied to polymerization processing. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3804–3813, 2005
Keywords:atom transfer radical polymerization  catalyst recycling  fluorous biphase catalysis  oligomers  phase separation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号