首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis of trans-Disubstituted Alkenes by Cobalt-Catalyzed Reductive Coupling of Terminal Alkynes with Activated Alkenes
Authors:Subramaniyan Mannathan  Chien-Hong Cheng
Institution:Department of Chemistry, National Tsing Hua University, Hsinchu, 30013 (Taiwan), Fax: (+886)?3572-4698.
Abstract:A cobalt-catalyzed reductive coupling of terminal alkynes, RC?CH, with activated alkenes, R'CH?CH(2) , in the presence of zinc and water to give functionalized trans-disubstituted alkenes, RCH?CHCH(2) CH(2) R', is described. A variety of aromatic terminal alkynes underwent reductive coupling with activated alkenes including enones, acrylates, acrylonitrile, and vinyl sulfones in the presence of a CoCl(2) /P(OMe)(3) /Zn catalyst system to afford 1,2-trans-disubstituted alkenes with high regio- and stereoselectivity. Similarly, aliphatic terminal alkynes also efficiently participated in the coupling reaction with acrylates, enones, and vinyl sulfone, in the presence of the CoCl(2) /P(OPh)(3) /Zn system providing a mixture of 1,2-trans- and 1,1-disubstituted functionalized terminal alkene products in high yields. The scope of the reaction was also extended by the coupling of 1,3-enynes and acetylene gas with alkenes. Furthermore, a phosphine-free cobalt-catalyzed reductive coupling of terminal alkynes with enones, affording 1,2-trans-disubstituted alkenes as the major products in a high regioisomeric ratio, is demonstrated. In the reactions, less expensive and air-stable cobalt complexes, a mild reducing agent (Zn) and a simple hydrogen source (water) were used. A possible reaction mechanism involving a cobaltacyclopentene as the key intermediate is proposed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号