首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ozone- and thermally activated films of palladium monolayer-protected clusters for chemiresistive hydrogen sensing
Authors:Ibañez Francisco J  Zamborini Francis P
Institution:Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
Abstract:Here we describe the chemiresistive H2-sensing properties of drop-cast films comprised of 3.0 nm average diameter hexanethiolate-coated Pd monolayer-protected clusters (C6 Pd MPCs) bridging a pair of electrodes separated by a 23 microm gap. The gas-sensing properties were measured for 9.6-0.11% H2 in a H2/N2 mixture. The sensing mechanism is based on changes in the resistance of the film upon reaction of Pd with H2 to form PdH(x), which is known to be larger in volume and more resistive than pure Pd. As-prepared Pd MPC films are highly insensitive to H2, requiring O3 and thermal treatment to enhance changes in film resistance in the presence of H2. Exposure to O3 for 15 min followed by activation in 100% H2 leads to an increase in film conductivity in the presence of H2, with a detection limit of 0.11% H2. When exposed to temperatures of 180-200 degrees C, the conductivity of the film increases and a decrease in conductivity occurs in the presence of H2 with a detection limit of 0.21%. The sensing behavior reverses after further heating to 260 degrees C, exhibiting an increase in conductivity in the presence of H2 as in O3-treated films and a detection limit of 0.11%. The sensitivity of the variously treated films follows the order O3 > high temp > low temp, and the response times at 1.0% H2 range from 10 to 50s, depending on the treatment. FTIR spectroscopy, Raman spectroscopy, and atomic force microscopy provide information about the C6 monolayer, Pd metal, and film morphology, respectively, as a function of O3 and heat treatment to aid in understanding the observed sensing behavior. This work demonstrates a simple chemical approach toward fabricating a fast, reversible sensor capable of detecting low concentrations of H2.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号