首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of hydrophobic alkylated gold nanoparticles on the phase behavior of monolayers of DPPC and clinical lung surfactant
Authors:Tatur Sabina  Badia Antonella
Affiliation:Department of Chemistry, Université de Montréal, C.P. 6128 succursale Centre-ville, Montréal, Québec H3C 3J7, Canada. sabina.tatur@umontreal.ca
Abstract:The effect of hydrophobic alkylated gold nanoparticles (Au NPs) on the phase behavior and structure of Langmuir monolayers of dipalmitoylphosphatidylcholine (DPPC) and Survanta, a naturally derived commercial pulmonary surfactant that contains DPPC as the main lipid component and hydrophobic surfactant proteins SP-B and SP-C, has been investigated in connection with the potential implication of inorganic NPs in pulmonary surfactant dysfunction. Hexadecanethiolate-capped Au NPs (C(16)SAu NPs) with an average core diameter of 2 nm have been incorporated into DPPC monolayers in concentrations ranging from 0.1 to 0.5 mol %. Concentrations of up to 0.2 mol % in DPPC and 16 wt % in Survanta do not affect the monolayer phase behavior at 20 °C, as evidenced by surface pressure-area (π-A) and ellipsometric isotherms. The monolayer structure at the air/water interface was imaged as a function of the surface pressure by Brewster angle microscopy (BAM). In the liquid-expanded/liquid-condensed phase coexistence region of DPPC, the presence of 0.2 mol % C(16)SAu NPs causes the formation of many small, circular, condensed lipid domains, in contrast to the characteristic larger multilobes formed by pure lipid. Condensed domains of similar size and shape to those of DPPC with 0.2 mol % C(16)SAu NPs are formed by compressing Survanta, and these are not affected by the C(16)SAu NPs. Atomic force microscopy images of Langmuir-Schaefer-deposited films support the BAM observations and reveal, moreover, that at high surface pressures (i.e., 35 and 45 mN m(-1)) the C(16)SAu NPs form honeycomb-like aggregates around the polygonal condensed DPPC domains. In the Survanta monolayers, the C(16)SAu NPs were found to accumulate together with the proteins in the liquid-expanded phase around the circular condensed lipid domains. In conclusion, the presence of hydrophobic C(16)SAu NPs in amounts that do not influence the π-A isotherm alters the nucleation, growth, and morphology of the condensed domains in monolayers of DPPC but not of those of Survanta. Systematic investigations of the effect of the interaction of chemically defined NPs with the lipid and protein components of lung surfactant on the physicochemical properties of surfactant films are pertinent to understanding how inhaled NPs impact pulmonary function.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号