首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamic response of micro-pillar sensors measuring fluctuating wall-shear-stress
Authors:Ch Brücker  D Bauer  H Chaves
Institution:1.Institut für Mechanik und Fluiddynamik, Lehrstuhl für Str?mungsmechanik und Str?mungsmaschinen,TU Bergakademie Freiberg,Freiberg,Germany
Abstract:We present in this paper test results of flexible micro-pillars and pillar arrays for wall shear stress measurements in flows with fluctuating wall shear stress such as unsteady separated flows or turbulent flows. Previous papers reported on the sensing principle and fabrication process. Static calibrations have shown this sensor to have a maximum nonlinearity of 1% over two orders of wall-shear-stress. For measurements in flows with fluctuating wall shear stress the dynamic response has been experimentally verified in an oscillating pipe flow and compared to a calculated response based on Stokes’ and Oseen’s solution for unsteady flow around a cylinder. The results demonstrate good agreement under the given boundary conditions of cylindrical micro-pillars and the limit of viscous Stokes-flow around the pillar. Depending on the fluid and pillar geometry, different response curves result ranging from a flat low-pass filtered response to a strong resonant behavior. Two different methods are developed to detect the frequency content and the directional wall shear stress information from image processing of large sensor films with arrays of micro-pillars of different geometry. Design rules are given to achieve the optimal conditions with respect to signal-to-noise ratio, sensitivity and bandwidth for measurements in turbulent flows.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号