首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determination of stability and degradation in polysilanes by an electronic mechanism
Authors:Sharma Asha  Lourderaj U  Deepak Deepak  Sathyamurthy N
Institution:Department of Materials and Metallurgical Engineering, and Samtel Center for Display Technologies, Indian Institute of Technology Kanpur, Kanpur, 208016 India.
Abstract:Polysilanes are potential candidates for active materials in light emitting diodes because of possible emission in the near-ultraviolet to blue region. Unfortunately, they degrade rapidly upon exposure to light because of scission of sigma bonds. Relative stability of four polysilanes, for example, poly(di-n-butylsilane) (PDBS), poly(di-n-hexylsilane) (PDHS), poly(methylphenylsilane) (PMPS), and polybis(p-butylphenyl)silane] (PBPS), which have been reported as active materials in light emitting diodes, have been investigated theoretically through semiempirical (AM1) and ab initio (HF/6-31g) methods and density functional theory using B3LYP parametrization. The AM1 level of calculation predicts the absorption maxima reasonably, but it fails to explain the relative stabilities of the four polysilanes in the excited state. However, calculations based on configuration interaction with single excitation and time-dependent density functional theory suggest additional stabilization in the excited states through intersystem crossing to triplets for PMPS and PBPS, consistent with the experimental observation. In contrast, no such stabilization is predicted for PDBS and PDHS. Furthermore, the existence of a stable triplet state in PMPS may also explain the visible emission observed experimentally in PMPS.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号