首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of partial least squares regression and multi-layer neural networks for quantification of nonlinear systems and application to gas phase Fourier transform infrared spectra
Authors:Husheng Yang  J.D. Tate
Affiliation:a Department of Chemistry, University of Idaho, College of Science, Moscow, ID 83844-2343, USA
b Dow Chemical Company, 2301 Brazosport Blvd., B-1463, Freeport, TX 77541, USA
Abstract:The performance of back-propagation artificial neural networks (NN) and partial least squares (PLS) regression for the calibration of linear and nonlinear systems has been investigated by using six types of synthetic data. Three PLS methods, conventional linear-PLS and two nonlinear-PLS methods, have been used in the study. In all but one of the synthetic data types, the band intensities varied nonlinearly with concentration. These five data types were designed to represent the effect of band shifts with increasing concentration, a nonlinear relationship between peak height and concentration, or a combination of both types of nonlinearities. The results showed that NNs perform better than PLS for all the nonlinear datasets. When a band shift is the major reason for the nonlinearity, the relative performance of NNs and PLS depends on the overlap of the absorption bands. If there is no band overlap, neither NN nor PLS can calibrate the data accurately but the results could be improved by convolving the spectral features with a Gaussian broadening function. The results indicate that a combination of peak position shift and peak height change is the most difficult nonlinearity to calibrate. NN and PLS were also used to determine the concentration of CHCl3 in pure component and mixtures of CHCl3 and CH2Cl2 using their Fourier transform infrared (FT-IR) spectra, a dataset that has been proved nonlinear in high concentrations due to the nonlinear response of the detector. The best results for the experimental data were obtained by applying one hidden layer NN to the mean-centered absorbance spectra.
Keywords:Partial least squares regression   Multi-layer neural networks   Gas phase Fourier transform infrared spectra   Non-linearity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号