首页 | 本学科首页   官方微博 | 高级检索  
     


Flow injection differential potentiometric determination of lysine by using a lysine biosensor
Affiliation:Department of Analytical Chemistry, University of Barcelona, Avenue Diagonal 647, 08028-Barcelona, Spain
Abstract:This paper describes a method for the determination of lysine based on a flow injection (FI) differential potentiometry system. The flow injection manifold is composed of a support electrolyte solution channel and a water channel acting as a carrier into which the sample solution is injected. The lysine biosensor was consisted of lysine oxidase chemically immobilized on a nylon membrane and attached to an all-solid-state ammonium electrode. A circular ammonium electrode was used as a reference. Hence, the possible interference of endogenous ammonium can be partly corrected by differential potentiometry. In order to increase the sensitivity of the response, the reaction was kinetically developed following a stopped-flow method. As a result, the sensitivity increased from 20 to 40 mV per decade when comparing the FI and the stopped-flow values. Furthermore, the peak-to-peak stopped-flow signals generated can be used as a more selective analytical response for lysine. The quantification of lysine in mixture samples containing small amounts of ammonium can be achieved with an acceptable accuracy, with prediction errors lower than 4%. However, when the ammonium concentration exceeded the lysine concentration, multivariate calibration with non-linear partial least squares (PLS) regression was needed to improve the lysine quantification, with an overall prediction error around 10%.
Keywords:Differential potentiometry   Lysine biosensor   Ammonium electrode   Flow injection analysis   Lysine analysis   Stopped-flow   Partial least squares regression
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号