首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Generation of neutrals from ionic precursors in the gas phase. The rearrangement of CCCCCHO to HCCCCCO
Authors:Fitzgerald Mark  Bowie John H  Dua Suresh
Institution:Department of Chemistry, University of Adelaide, South Australia, 5005.
Abstract:The neutrals HCCCCCO and CCCCCHO have been studied by experiment and by molecular modelling at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory. Neutral HCCCCCO has been made by one-electron reduction of HCCCCCO]+ in the dual collision cell of a VG ZAB 2HF mass spectrometer. The isomer CCCCCHO is also formed in the dual collision cell, but this time by one-electron oxidation of the anion CCCCCHO]-. Comparison of the CID and +NR+ mass spectra of HCCCCCO]+ indicates that neutral HCCCCCO, when energised, retains its structural integrity. If the excess energy of HCCCCCO is > or = 170 kJ mol-1, decomposition can occur to give HCCCC and CO (calculations at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory). The situation with the isomer CCCCCHO is different. Comparison of the -CR+ and -NR+ spectra of CCCCCHO]- shows that both neutral and cationic forms of CCCCCHO partially rearrange to a species which decomposes by loss of CO. The peak corresponding to loss of CO is more pronounced in the -NR+ spectrum, indicating that the rearrangement is more prevalent for the neutral than the cation. Theoretical calculations suggest that the species losing CO could be CCCCHCO or HCCCCCO, but that HCCCCCO is the more likely. The lowest-energy rearrangement pathway occurs by successive H transfers, namely CCCCCHO-->CCCCHCO-->CCCHCCO-->HCCCCCO. The rearrangement of CCCCCHO to HCCCCCO requires CCCCCHO to have an excess energy of > or = 94 kJ mol-1. The species HCCCCCO formed by this exothermic sequence (214 kJ mol-1) has a maximum excess energy of 308 kJ mol-1: this is sufficient to effect decomposition to HCCCC and CO.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号