首页 | 本学科首页   官方微博 | 高级检索  
     


Metal-bridging mechanism for O-O bond cleavage in cytochrome C oxidase
Authors:Blomberg Margareta R A  Siegbahn Per E M  Wikström Mårten
Affiliation:Department of Physics, Stockholm University, S-106 91 Stockholm, Sweden. mb@physto.se
Abstract:Density functional theory (B3LYP) has been applied to large models of the Fe(II)-Cu(I) binuclear center in cytochrome oxidase, investigating the mechanism of O-O bond cleavage in the mixed valence form of the enzyme. To comply with experimental information, the O(2) molecule is assumed to be bridging between iron and copper during the O-O bond cleavage, leading to the formation of a ferryl-oxo group and a cupric hydroxide. In accord with previous suggestions, the calculations show that it is energetically feasible to take the fourth electron needed in this reaction from the tyrosine residue that is cross-linked to one of the copper ligands, resulting in the formation of a neutral tyrosyl radical. However, the calculations indicate that simultaneous transfer of an electron and a proton from the tyrosine to dioxygen during bond cleavage leads to a barrier more than 10 kcal/mol higher than that experimentally determined. This may be overcome in two ways. If an extra proton in the binuclear center assists in the mechanism, the calculated reaction barrier agrees with experiment. Alternatively, the fourth electron might initially be supplied by a residue in the vicinity other than the tyrosine.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号